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PREFACE

There are many physical systems whose action can be

controlled and whose performance is to be optimized in some sense.

The study of the means of attaining the desired optimum behavior

of a system constitutes a basic problem in optimization theory.

Often the action of a system may be constrained by certain physical

limitations. In this investigation the problem of optimizing the

performance of a constrained system is examined. Only systems

described by a set of first order ordinary differential equations,

and physical limitations which can be represented by algebraic

inequalities are discussed.
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supervised the research in this dissertation; to Dr. W. T. Fowler

for many long and interesting discussions; and to Dr. P. L. Odell
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CHAPTER i

INTRODUCTION

Many dynamical systems of engineering interest are

described by a set of first order ordinary differential equations

whose solutions must satisfy specified initial and terminal

conditions. An example of such a dynamical system is the

trajectory of a missile which is required to intercept a moving

target. The process of optimizing the motion of a dynamical

system consists of the selection of certain input variables which

appear in the derivative functions, in such a way that the

performance of the given system is optimal in some sense. The

input variables are known as control variables. The optimization

problem can be restated in terms of the minimization of some

quantity (usually referred to as the performance index) subject

to (i) the satisfaction of a set of differential equations which

describe the dynamical system, (2) specified conditions which the

system must satisfy at the initial and terminal times, and (3)

any additional conditions which may be imposed. The third point

is important because physical limitations on the motion of the

dynamical system may be included as additional conditions for the

problem. An example is the limited thrust magnitude on a

variable-thrust rocket. In this work, only one type of

formulation of a physical limitation is considered--the inequality

constraint. There are many different physical limitations on the

motion of a dynamical system that can be represented by inequality

!
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constraints [6,9,15,35,37,38]. Included in these is the bounded

thrust magnitude of a variable-thrust rocket.

Optimization problems with inequality constraints have

been the subject of extensive theoretical studies involving the

analysis of general problems by the techniques of the Calculus of

Variations and Optimal Control Theory, [2,3,21,22,23,24,43,46,48].

The earliest work on this topic, Valentine [48], treated the

Problem of Lagrange with inequality constraints from the Viewpoint

of the Calculus of Variations. In the book by Pontryagin et al.

[43], the Maximum Principle of Optimal Control Theory was used.

Berkovitz [2,3] reduced a general problem formulated in Optimal

Control Theory to the Problem of Bolza in the Calculus of

Variations in order to use the known results of the Bolza Problem.

In each of these theoretical studies, necessary conditions which

the solution to the optimization problem must satisfy are

obtained.

A knowledge of these necessary conditions is usually

insufficient to produce the solution to the optimization problem.

However, the known conditions may be used to reduce the

optimization problem to a two-point boundary value problem which

then can be resolved by an iterative numerical procedure. The

engineer is concerned not only with the properties of an optimal

solution but also with the problem of obtaining such a solution.

Hence, the purpose of this investigation can be stated as

follows: (i) to study the effect of inequality constraints on the

optimization of dynamical systems described by first order
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ordinary differential equations, which are usually nonlinear,

and (2) to provide a computational algorithm that can be used

to obtain a solution to the resulting two-point boundary value

problem.

In Chapter 2 an optimization problem with inequality

constraints is formulated. Then the properties of two general

forms of inequality constraints are discussed. This discussion

leads to a problem reformulation, which is treated in Chapter 3.

Computational algorithms based on a new perturbation method for

inequality-constrained nonlinear problems are discussed in

Chapter 4. The numerical solution of a constrained nonlinear

problem is presented in Chapter 5. This example problem is a

mathematical model of an Earth-Mars transfer trajectory in three

dimensions, with inequality constraints as added side conditions.

The notation to be used in the following chapters is

given below.

(i) _A
_B

(2) A superscript

denotes inverse.

T denotes transpose; a superscript -i

(3) If X is an n-dimensional vector, then the norm of X is

II xll = max IxjI.
l_j __n



(4) If Q is a scalar then

Qx : [_xl _-_Q _-_Q]• _X 2 ' ' " " ' _X
n

where X is an n-dimensional column vector.

(5) If Y is an m-dimensional column vector and X

n-dimensional column vector, then

is an

_Y
_-Z = YX =

_YI _Yl

_X l _X
n

_Ym _Ym

_X 1 _X
n

(6) _If Q is a scalar and X and Y are defined as in (5)

then

_2Q _
_x_Y QXY =

_2Q _2Q _2Q

_Xl_Y1 _XI_Y2 "'" _XI_Ym

_2Q _2Q ... _2Q

_Xn_YI _Xn_Y 2 _Xn_Y m



From this definition it follows that

QXY = (QYx)T

provided Q has continuous second partial derivatives at the

point at which QXY and QYX are evaluated.

(7) Let

Then,

t be a continuous scalar variable and let W = W(t).

W(t+l) -- lim W(t)
t÷t 1
t>tl

W(t]) = lim W(t)
t÷t l
t<tl

If W is either a vector or a matrix the above expression

applies to each component of the vector and to each element of

the matrix.

(8) X denotes dX
dt "

(9) ( )t denotes ( ) evaluated at t.

(i0) The variation of X, 6X, is denoted by x. A total change

in X is denoted by AX. Generally, AX -- x + XAt.
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ON INEQUALITY CONSTRAINTS

Consider the following optimization problem involving

inequality constraints: determine the control program U(t) on

the interval t O < t < tN so as to minimize the functional

_tN

r = G(X(t N),t N) + j q(x,u,t)dt
t
0

while satisfying the conditions

(2.1)

= F(X,U,t) (2.2)

ci(x,u,t) _<o (i = 1,2,...,_) (2.3)

Sj(X,t) s 0 (j : 1,2,...,8) (2.4)

on the interval
t o < t _< tN, and

L(X(t N),t N) = 0 ; (2.5)

where t O is known and X(t 0) is specified, i.e.,

X(t0) -- X° (2.6)
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The following definitions are used in Relationships (2.1)

through (2.6).

X

Xl(t)

X2(t)

Xn(t)

an n-dimensional vector of

state variables;

U

u_(t)

u2(t)

Um( t )

, an m-dimensional vector of

control variables;

F

m

F 1 (X,U,t)

F2(X,U,t)

Fn(X,U,t)

• a specified n-dimensional

vector function of X,U

and t;



L

m1(x(t N),tN)]

L2(X(t N) ,tN)_

L_(X(tN),t N)

, a specified _-dimensional

vector of terminal

constraint functions;

G X(tN),tN) , a specified scalar function of the

terminal values of X and t;

Q(X,U,t , a specified scalar function of X, U,

and t;

C

S

C i X,U,t)

C2 X,U,t)

C(X,U,t)

SI(X,t)-

S2(X,t)

SB(X,t)

• a specified s-dimensional

vector of inequality constraint

functions where each function

explicitly contains the control

U;

, a specified B-dimensional vector

of inequality constraint functions

which do not contain the control

U;
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and t, the scalar independent variable, hereafter referred

to as "time"

In many problems inequality constraints of the form

tNf

g(t N ) + Jv(X,U,t)dt S 0 (2.7)

to

or

tNf

+ l w(X,t)dt S 0 (2.8)h(t N )

to

are given. These integral or isoperimetric constraints can be

reduced to terminal inequality constraints by introducing two

new state variables, Xn+ I and Xn+ 2. The new state variables

satisfy the following differential equations:

Xn+l : v(X,U,t) , Xn+l(t O) = 0

)(n+2 = w(X,t) , Xn+2(t O) = 0

Then the Inequalities (2.7) and (2.8) are equivalent to the

inequalities

L_+ 1 = g(t N) + Xn+l(t N) <_ 0 (2.7')
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and

L£+2 = h(tN) + Xn+2(tN) ! 0 (2.8')

respectively. If the Inequalities (2.7') and (2.8') are expressed

as equalities by using the method of Valentine [48], (see Chapter

3), then L£+ 1 and L£+ 2 can be treated as terminal constraint

functions. Therefore, integral inequality constraints can be

handled within the framework of the problem given by Relationships

(2.1) through (2.6).

In the optimization problem given by (2..1) through

(2.6), any solution of Equation (2.2) which satisfies the

Inequalities (2.3) and (2.4) and the Initial Conditions (2.6)

is called a trajectory. Along any trajectory it is assumed that

all functions possess derivatives of any order that may be

required in the analysis.

The inequality constraints restrict the possible

solutions of Equation (2.2) to regions of the (X,U,t)-space

defined by Inequalities (2.3) and (2.4). The boundaries of these

regions (constraint boundaries) are the surfaces Sj(X,t) = 0

and Ci(X,U,t) = 0. The point [tl,X(tl)] where a trajectory

enters a constraint boundary is known as an entering-corner point.

The point where a trajectory leaves a constraint boundary,

[t2,X(t2)], is an exiting-corner point.

Many possible solutions to the differential

equations, Equation (2.2), with the initial conditions, Equation



ll

(2.6), can be obtained by choosing different functions for U.

Suppose one has a solution which satisfies every inequality

constraint of the form (2.3) and (2.4), except Ck and Sj. Thus,

Ci(X,U,t ) i 0 i _ k, liila

Si(X,t ) i 0 i _ j, liiiB

and

Ck(X,U,t) > 0

Sj(X,t) > 0

for some values of t in the interval, to__t__tN. How should

the control U be chosen in order to have Ck__Oand Sj__O?

The question is easily resolved for Ck. Suppose that

Ck(X,U,t)>O at time t. Since Ck explicitly contains the

control, one component of U can be found to satisfy the

equation

ck (x,u,t) --0 .

Therefore, an inequality constraint which explicitly contains

the control readily provides a means of calculating U so that

a constraint boundary (C i = O) will not be crossed. For a state-
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variable constraint such as Sj(X,t), which does not contain U,

a different procedure is required. (Two such procedures are given

in Section 2.1.) Thus far, only a single constraint has been zero

at a time. The problem of having more than one inequality con-

straint simultaneously zero is discussed in Section 3.3.

2.1 State-variable inequality constraints.

The choice of U so that the constraint boundary

Si(X,t) = 0 will not be crossed by a solution of Equation (2.2)

must now be resolved. On an arbitrary interval, tlstst2,

assume that Si(X,t)s0 for some solution of Equation (2.2). By

the statement of the problem at the beginning of this chapter,

only those solutions which remain within the region Si<0

or travel along the boundary Si:0 are sought. Hence, on the

interval tl!t3t2, it is required that Si(X,t) = 0 in order for

the solution to be admissible. If Si
is zero on t1__tst2

then every derivative of S i must be zero, also; i.e.,

dJs.

:I - 0 (j = 1,2,.°.) (2.9)
dt j

Equation (2.9) may be rewritten as

• [/d j-1 SdJ Sl _ i

dt j _X dtJ-i
F(x,u,t) + dj-lsi)

dt j -i
(2.10)
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for J = 1,2,... with

d0Si

_= S i
dt °

and
dX

dt
- F(X,U,t) .

The,state-variable constraint

constraint whenever

S o is called a q-th order

_U dt q
0

and

-= 0 (J = 0,i,..., q-l)

Hence the q-th derivative of Si is the first one that

explicitly contains the control U. The case in which q = 1

is treated by Berkovitz [3] and by Pontryagin et al. [43].

Dreyfus [18] and Bryson et al. [10] discuss cases in which

interval

from

q>l.

If Si is a q-th order constraint, then on the

tist!t2, where Si = O, the control may be determined

dqS i

dt q
= 0 (2.11)

t

Equation (2.11) is the required rule for choosing U on a

state-variable constraint boundary.
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Equation (2.11) involves X,U and t. This suggests that

a state-variable inequality constraint, such as described by

Inequality (2.4), may be replaced by a constraint of the form

of Inequality (2.3) and some auxiliary conditions. The

constraint can be written as

I -i ; if Si(X,t)<0

C(X,U,t) = (2.12)

dqS i ,
; if S (X t) = 0

dt q i '

so that C(X,U,t) _ 0 for t04t4t N. The auxiliary conditions

are readily obtained if one notes that in order for S to
i

remain zero on the interval tl!t!t2, when the control is given

by Equation (2.11), the following conditions must be satisfied:

(Si)tl = 0

dsll o

dq-isi )dtq_ 1 = 0 .

tl

Equations (2.13) follow from Equation (2.9) and

(2.13)
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o tl )t
(2.14)

Equation (2.14) holds for J - 1,2,..., q and t1_omt 2.

If Si<0 for t = t2 + e, where _ is an arbitrary

small positive number, then dJsi/dtJ is free (for each j) at

t - t2 + _. Therefore, at t = t2

dq-isi|_ = 0 . (2.15)

dt q-I Jt 2

Equation (2.15) is another auxiliary condition.

Therefore, a q-th order state-variable inequality

constraint, Si(X,t) , can be replaced, on the interval t0!t!t N,

by the q point-constraints given by Equations (2.13), the

point-constralnt given by Equation (2.15), and an inequality

constraint given by Equation (2.12). The point-constraints

constitute intermediate boundary conditions. (In the next

chapter a new optimization problem is defined with intermediate

boundary conditions and inequality constraints similar to

Inequality (2.3). This problem is then investigated to obtain

conditions which its solution must satisfy.)

There are two alternate procedures for dealing with a

q-th order state-variable inequality constraint.

i. On the constraint boundary, the auxiliary conditions

are taken as
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dJs
- 0

dt j

•

for J - 1,2,..., q. Denham [16] points out that

this type of formulation does not offer the

computational advantage of the formulation according

to Equations (2.12), (2.13) and (2.15).

The n state variables are related by q equations

on a q-th order state-variable constraint boundary,

[18]. Therefore, q of the state variables can be

determined in terms of the remaining n-q variables.

Without loss of generality, the first q state

variables can be written as

X i = Xi(Xk,t)

for i = 1,2,..., q; k = q+l, q+2,..., n . For the

n-q independent state variables, the differential

equations become

Xk = Fk(Xj 'U't) (2.16)

for k,J = q+l, q+2,..., n

Therefore, on a q-th order state-variable constraint

boundary, S = 0, the n differential equations,

Equation (2.2), are replaced by Equations (2.16),

with the control determined from dqS/d{ = 0.
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The question of using a reduced set of differential

equations is discussed by Dreyfus [18,19] and Berkovitz

and Dreyfus [4]. In Reference 4 the authors show the

equivalence between the use of a full set of equations

and the use of a reduced set. One advantage of retaining

the full set of equations is that the form of Equations

(2.2) does not change on a state-variable constraint

boundary.

An additional point to be discussed about a q-th order

state-variable constraint is the allowable bound on q. On the

boundary of a q-th order constraint, the n state variables are

related by q equations similar to Equations (2.13). Hence q!n

for a properly imposed constraint. A q-th order constraint with

q>n must be reformulated or removed from the problem. An example

of such a constraint is the constraint on one state variable, when

the derivative of that state variable is a constant. Such a state

variable is uncontrollable.

2.2 Entering- and exitins-corner times.

A subproblem associated with inequality constraints

concerns the determination of entering- and exiting-corner times.

These are the times at which a trajectory enters or leaves a

constraint boundary. For the constraints
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C(X,U,t) <_ 0

S(X,t) _ 0

an entering-corner time,

relationships

tl , is easily determined from the

C(X(tl),U(tl),tl) = 0 , [or S(X(tl),tl) = O]

where

C(X(T),U(T),T) < 0 [or S(X(_),T) < 0] for t1-E S T < tl,

with E an arbitrary small positive number. The determination of

an exiting-corner time is not as straight forward.

The analysis of an optimization problem gives a

rule for determining the optimal U (see Chapter 3). This rule

allows two values of U to be computed: an "unconstrained"

value, U , and a "constrained" value U. Use of U may cause

some of the inequality constraints to be greater than zero. If

this is the case, then the "constrained" value of the control

must be employed. The two possible values of the control

will be used to determine an exiting-corner time.

There are two cases which must be considered.
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(i) The trajectory travels along the constraint boundary for a

finite time interval.

_or the constraint C(X,U,t), an exiting-corner

time, t 2 , is determined from the relationships

C(X(t2),U(t2),t 2) = 0

when

c(x(T),u(_),_) > o

for

t2-¢ S T < t 2 .

Note that

C(X(t),U(t),t) = 0

for

t2-¢ <_ t < t 2 .

S(X,t)

Recall that a q-th order state-variable constraint

can be replaced by the conditions



2O

dt3 )tl

= s(J)(X(tl),tl) = 0

for j = 0,1,2,..., q-i on the constraint boundary S(X,t) = 0,

where tl is the entering-corner time. The control is determined

from

= s'q'(x(t),Uqt),t) = 0

t

Therefore, an exiting-corner time is that value of time,

for which

t2

s(q)(x(t2),_(t2),t2) = 0

when

> o

for t2-a Z • < t2

(2) The trajectory only touches the constraint boundary at one

point.

The exiting time is t 2 , and therefore

C(X(t2),U(t2),t2) = 0

s(q)( X (t2),U(t2),t2) = 0
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ANALYSIS

"Therefore let every man
now task his thought".

King Henry V
Act I Scene II

3.1 A _eneral problem.

A general problem with inequality constraints and

intermediate boundary conditions can now be stated: determine the

control program U(t), to_<t_tN, so as to minimize the functional

NF - G(X(tN),t N) + _ Q(X,U,t)dt
j=l J++

tj -i

subject to the conditions

(3.1)

= F(X,U,t) (3.2)

Ci(X,U,t) < 0 (i = 1,2,..., r) (3.3)

on the intervals t;_ i -< t < t (j = 1,2,..., N), where

t O is specified and X(t O) is known, i.e.,

x(t o) = xo (3.4)

A_
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and where

L (j)(x(tj),tj) = 0 (j = 1,2,..., N) . (3.5)

The times t-j may be unknown. It is assumed that t I = t + =• i ti '

for i = 0,1,2,..., N. The use of the superscripts + and - is

explained in the notation section of Chapter 1. A solution of

Equation (3.2) which satisfies Inequalities (3.3), Equations

(3.5) and the Initial Conditions (3.4) will be called an optimal

trajectory• The notation used in Relationships (3.1) through

(3.5) is defined as follows:

X

X1(t)

X2(t)

Xn(t)

an n-dimensional vector of

state variables with each

continuous on the interval

t o s t S tN;

Xo

1

U

U1(t)

u2(t)

Um(t)

an m-dimensional vector of

control variables;
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F ..

-FI(X,U,t )"

F2(X,U,t)

J

Fn(X,U,t)

a specified n-dimensional

vector function with each

defined on the intervals

t+. < t < t-
j-1 - - J

F.

1

L(J ) =

Ll(J)(x(tj),tj)

L2(J)(x(tj),tj)

L (J)(x(tj),tj)
_j

, a specified _.-dimensional
3

vector function of point-

constraints, representing

intermediate boundary

conditions ;

G(X(tN),t N) and Q(X,U,t), specified scalar functions; and

C

q

CI(X,U,t)

C2(X,U,t)

Cr(X,U,t)
m

a specified r-dimensional vector

of inequality constraint functions

satisfying _Ci/_U _ 0 whenever

Ci = 0 , for each i.

The points t = t. (J = 1,2,..., N-l) denote the times at which
J

the trajectory enters or leaves a state-variable constraint

boundary (see Chapter 2), or the times at which some Fi(X,U,t)

has a finite jump discontinuity.

It will be assumed that all functions possess derivatives

of any order which may be required in the analysis. This property
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is to hold on each interval t+ < t < t- (j = 1 2 N)
j-i - - j ' ''''' "

Furthermore, if a function is discontinuous at t = t. then it
J

is assumed that unique right and left limits exist.

It is noted that problems containing discontinuous state

variables, [13], may be handled also. For example, suppose that

at t = t i

X1(t+l) = xi(tT) + c ,

where c is a constant. Introduce a new state variable Xn+ I.

Then

X1 = FI(XI,X2,...,Xn,U,t) , Xl(t 0) given

Xn+l = 0 , Xn+l(t 0) = Xi(t _) + c

for t O < t < t[ , and

XI = 0 , X1(t +) = Xl(tl)

• +
Xn+ I = FI(Xn+I,X2,...,Xn,U,t) , Xn+l(tl) = X1(t 1) + c .

Use of the extra state variable, Xn+l, has removed the dis-

continuity on the state variable X i. Henceforth the total number

of state variables, n, will be assumed to consist of the original

state variables plus the extra state variables introduced to remove
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discontinuities.

In order to include the constraints given by Inequalities

(3.3) in the analysis, the method due to Valentine [48] will be

employed. Let the real number Zk be defined by

Zi + Ck(X,U,t) = 0 . (3.6)

As Zk is to be a real number, Z_ Z 0 and thus Equation (3.6)

can replace the inequality Ck _< 0 , for k = 1,2,..., r. By

means of Equation (3.6), the inequality constraints have been

converted into equality constraints°

The classical method of unknown multipliers will be used

in order to study the effects of the intermediate boundary

conditions, the terminal conditions and the inequality constraints

on the functional being minimized, and also to obtain the optimal

choice for the control.

Adjoin Equations (3.2), (3.5) and (3.6) to Equation (3.1)

by unknown Lagrange multipliers

a new scalar function V:

P0' P' v(j) and M to define

where

t7

V = [ R (j) + H - pT]_ + MTz2)dt _ (3.7)

j=l +

tj -i

R (N) = PoG(X(tN),tN) + [v(N)]TL(N)(X(tN),tN) (3.8)
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R (j) = [v(J)]TL(J)(x(tj),tj) , (j = 1,2,..o, N-I) (3.9)

z 2 _-

2

Zrj

, P =

P1

P2

P
n

(J) =

(j)

, M =

M1

M2

o

I

I

I

LMr _]

and P0 is a scalar constant.

is defined by

The variational Hamiltonian, H,

H = PoQ(X,U,t) + pTF(x,u,t) + MTc(x,u,t) (3.10)

Minimization of Equation (3.1), subject to the requirement that

Equations (3.2), (3.4), and (3.5) and Inequalities (3.3) be

satisfied is equivalent to minimization of Equation (3.7) with

initial conditions given by Equation (3.4) as a side condition.

Assume that a minimizing trajectory exists; then

Equation (3.7) will be expanded in a Taylor series about this

trajectory. The first order terms in the Taylor series constitute

the first variation of V, denoted by 6'V; the second order

I

terms, except for a factor of 2' compose the second variation of

V, 6"V. In the following sections both the first and the second

variations of V will be obtained. By evaluating 6'V and

_"V on a minimizing trajectory, the conditions which the
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trajectory must satisfy will be obtained. For a solution to be

a minimizing trajectory it is required that 6'V = 0 and

6"V_0 for arbitrary small variations about the solution, [5].

Let a candidate trajectory give a value of V as

V = V0(X,P,U,M,Z2,v(J),tj)

A nearby trajectory will give

V = VI(X+AX,P+AP,U+AU,M+AM, Z2+AZ 2 (J) (J)
,v +Av ,tj+Atj) .

Then the change in V is given by

= _ + ...
= - + (6 "V_0aV V I V 0 (6 'V_0 .

3.2 The first variation.

The first order terms in the Taylor series expansion of

V are

6'V = _ AR (j) + A I (H - pT_( + MTz2)dt (3.11)

j=l Jt+.
J-I

Expansion of the terms outside the integral sign gives

I (X (J)At + R(J)Av(J) 1 (3.12)AR (j) = R J)AX + Rt v t.

J

for j = 1,2,..., N-I, and
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_R(N) :

v PO APO tN

The subscript notation

while (R)
t

(j)(j) on

respect to

RX denotes partial differentiation,

denotes the value of R at t. The superscript

has been dropped whenever partial differentiation with

(j)
v is required.

By Leibnitz's Rule, the variation of each of the integral

terms is

A

_t7

3(H_pT_+MTz2)d t = [(H-pT_+MTz2)At]t -

3-1
r,

- [(H-Prx+MTz2)At]t+

j-i
t

+ 6 (H-pTx+MTz2) dt

'--i

When expanded, the last term in Equation (3.14) is

_tU

6 (H-P_x+MTz2) dt =

t +
3-i

tU

f(HjX+Hpp+HuU+HM_-XTp-pTf{+ (Z 2 )T_+MT, (Z 2 )+Hpo ]dt
_t +. PO'

3-i

where

(3.14)

(3.15)

x = 6X, _ -- 6M, U = 6U, p = 6P
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and

d
6i = y£(_x) = _ .

Now, since

r

MTz2= Miz 
i=l

it follows that

r

MT_(z 2 ) = 2 [ M.Z z
i=l i i

(3.16)

where z. = 6Z..
i l

If the term -PTi under the integral in

Equation (3.15) is integrated by parts, and if the relation

AX = x + X At (3.17)

is used to combine terms, the first variation of

obtained in the form of Equation (3.18).

and x(t 0) = 0 by Equation (3.4) since

that

V can be

Note that At 0 = 0

X(t 0) is known, and

AX(t_.) = AX(t]') = AX(t.)3

since X is assumed continuous at t..
3
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_(N)+H+MTz2)At + R(N)av6'V = [(R N)-pT)Ax + (n t v
(N)

+ R(N)AF0
P0 ]tN

+
N-I (j)

R(J) (t)Av
j--1 _ J

+

N-I

Z [4J)(tj)-pT(t_)*pT(t])]AX(tj)
j=l

+

+

N-I

+)+MT(t])Z[ [R_J )(tj)+H(t_)-H(tj
j:l

t_

[ [ (Hx+PT )x+ (Hp-X T )P+HuU
j=l

j-i

2(tj)-MT(t_.)Z2(t])]Atj

r

+(HM+(Z2)T)_+HP0P0+2i=I [ MiZizi]dt
(3.18)

If the trajectory makes V an extremum then 6'V = 0.

The consequences of this are examined in the next section.

3.3 Conditions obtained from the first variation.

The first variation of V,_'V, must be zero on a

minimizing trajectory, [5]. Requiring that Equation (3.18) be

zero leads to the following conditions.
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(1) At tN.

[PT(t N) - R(XN)(tN)]Ax(t N) = 0 (3.19)

[R_N)(tN ) + H(t N) + MT(tN)Z2(tN)]AtN : 0 (3.2o)

[R(N)(t )]A_ (N) = 0
v N 3.21)

[R(N)(tN)]AP = 0
P0 0

3.22

(2) At t. (j = 1 2 N-l)

" T t+
[R(J)(tj) - P (tj) + pT( j)]AX(t

J
= 0 3.23

JR# j ) (tj)+H(tj)-H(t +j)+MT(t])Z2(tj
_MT_ t +

j)z
+'I ]At =

2(tj , j 3.24

[R_J)(tj)]Av(J)v = 0 3.25

I

i"

In Equations (3.19), (3.23), 3_21) and 3.25) the

quantities in the brackets are zero on the optimal trajectory.

Equations (3.20) and (3.24) either t. is known at. = 0)
l 1

the quantity in the brackets is zero_

Equations (3.19) through (3.22) are the terminal

conditions. Equations (3.23) through (3o25) are the corner

conditions. Note that P and H may be discontinuous at

to (j = 1 2 N-l)

or

In
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(3) For t +
j_l -_ t S t] •

equations are given by

(j : 1,2,.o., N), the Euler-Lagrange

= HT (3.26)

T
: -H X (3.27)

0 : I-l_ (3.28)

T
0 = HM + Z 2 (3.29)

0 = HPoPO (3.30)

0 = M.Z.
i 3_

(i = 1,2,..o, r) (3.31)

Equation (3.26) is merely Equation (3.2), and Equation (3.29 is

Equation (3.6) written in vector form. Since P0

P0 = AP0 Furthermore neither HP0= Q nor R(N)(t ) = G
• ' P0 N

both identically zero, hence P0 = 0. But Equation (3.1) is

to be minimized; therefore P0a0. Problems in which P0 is

zero are called abnormal and will not be considered here°

is a constant,

are

Since

P0 is an arbitrary positive constant, it can be set equal to

unity: henceforth, P0 = i will be used.

Equation (3.31) can be combined with Equation (3.6)

to give



33

M.C. = 0
i l

(i = 1,2,..., r)

The differential equations which the optimal trajectory must

satisfy are restated as

= F(X,U,t)

T FTp _ cTM: -QK -

(3.32)

where M and U are determined from

0 = M.C (X,U,t),
mi

0 = QU + F P +CuH

(i = 1,2,..., r)

J

(3.33)

Equations (3.33) are r + m algebraic (and usually nonlinear)

equations in the r + m unknowns M. (i = 1,2,..., r) and
l

Uk (k = 1,2,..., m) in terms of X,P and t. Now, if C.I < 0 then

M l 0; if C. 0 then M. must be determined. The maximum• 1 1

number of constraints C.
l

that can be zero at any given time must

be ascertained.

Suppose that rl (ri-<r) of the Inequality Constraints

(3.3) are simultaneously zero at time t. Form these r!

constraints into a vector E. The rlxm matrix E U must be of

rank rl (r!<m) in order to solve for r I of the controls in

terms of the remaining m-r i controls, the state X, and the time
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t, [i], in the equation E(X,U,t) = 0 Therefore, the maximum

number of constraints which can simultaneously be zero must be

less than or equal to the number of control variables. The

r I constraints must be independent in the sense that the

r1×m matrix EU is required to be of full rank.

Let the vector W contain those Mi corresponding to

a constraint that is zero. The k-th component of C_M isX

r _C. r I DE.
i

i= I m j=l _Xk J

• = .<0. Therefore,because M l 0 whenever Cl

and similarly,

To obtain information on the possible finite jump

discontinuities in P, the second equation in each of Equations

(3.32) and (3.33) is rewritten as

T _ FTp _ ETxW: -Qx (3.34)
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and

T FTp + ETw0-- QU+
(3.35)

Since the rixm matrix EU has rank rl, there is a nonsingular

rixri submatrix, EU, of EU, such that Equation (3.35) can be

written as the two following equations:

-T pTp + ETw __ 0QU +

~T ~T TQu + FuP + _' w = o

The first of these vector equations represents r i

equations; the second, m-rl algebraic equations.

W gives

algebraic

Solving for

-T I -T -T
W = -(Eu)- [Qu+Fu P] ,

(3.36)

m

since E U

(3.34);

is nonsingular. On substituting W into Equation

(3.37)

Let S(X,t) be a q-th order state-variable constraint.

Assume that the trajectory enters the constraint boundary at

t = ti and leaves at t = t2. For simplicity, assume only one
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constraint will be zero during this time interval, therefore

r I = i. From Equations (2.13) and 2.15), it follows that

L_l)(x(tl),tl) =
dk-is
dt k-I !

/ tl

(k = 1,2,..., q)

and

L(2)(X(t2),t2) =

/
Idq- iS

[dt q-I
t2

From Equation (3.23)"

q

pT(tt) = pT(tT) - _ v! I)

j=l _

pT(t+ ) = pT(t2) _ v(2) [_

L dt j -I t i

dq-ls)l
dt q-I t2

t (3.38)

By Equations (3.38), the Lagrange multipliers, Pk' may be

discontinuous at both t I and t2. Following an argument given

by Bryson et al. [i0] for the case of one control variable (m=l),

it will be shown that P can be continuous at t = t 2. In

the expression on the right hand side of Equation (3.37), replace

P by

P + b

where

is

b is an arbitrary scalar constant. The new expression



-1-T f+ [ Fx-E x F U

+

P +

T T-T-I-T
[Qx-Ex(E U) QU ]

X Id tq- i

Subtracting Equation (3.37) from this expression gives

37

(3.39)

Now, on a state-variable constraint boundary a component of the

control vector is determined from the equation

0 ----E --
dqS d

dt q dt dtq- I l_t__i F +

dq- !SI

Thus ,

EU aU Idtq =

since the q-i derivative of S

Now

I FU

does not contain U .

+ 8t _X Idtq-i )i
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and therefore

Since b is a constant, Axpressio n (3.39) reduces to

' T , (' q--l,!l '!'
',., _ i.f,_ d s

L _ / Ji ' t

- )_1,'_' T.-T-1-T I _ i dq-lS -t_' b

Usin_ the fact that
o

i u = idtq_I t'u

this expression becomes

{E_- E x (EU)} b = 0

Hence Equation (3.37) is unchanged whenever

r--

i
I

L_

dq-Is ) - T
dt q-I ,_I

b

is added to P. If this addition is made at each t

interval tlit<t-2, then at t = t2, P(t ) is given by

Equation (3.38):

in the
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+ (2)
pT(t2) = pT(t_) + (b-v )

dq-is II
dt q-I t2

If b = v (2)
+

, then P(t 2) = P(t2). Hence, P can be made

continuous at points where the trajectory leaves a state-

constraint boundary [21] by proper choice of the arbitrary

constant b; but P may be discontinuous at points where the

trajectory enters a state-constraint boundary. The preceding

argument can be extended to cases in which more than one state-

variable constraint is simultaneously zero. The expression used

to replace P, in Equation (3.37) is

P +

F

S_ 2)

T

J

where

s!J) -
J

dqj -Is.

dtqj -i

(j = 1,2,..., c_)
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b __

bl]b2

I

A final consequence of 6'V = 0 is related to Equation

(3.28). Since this equation is written in vector notation, it

actually represents m algebraic equations. If any one of these

equations were identically zero, independent of some component of

U, there is a singular extremal. This will usually occur for

Ci < 0. Kopp and Moyer [34] give conditions to determine U for

singular extremals.

3.4 The second variation.

The second order terms in the Taylor series expansion of

V = V i(X+AX,P+AP,U+AU,M+aM,Z2+AZ2,v (j)
+Av (j) ,tj+Atj)

about (X,P,U,M,Z2,v(J),tj) constitute the second variation of

i
V, _"V, except for a factor of _-. In particular, an optimum

trajectory is required to have 6'V = 0 , 6"V __ 0 The second

variation of V is given below for a trajectory which satisfies

6'V = 0
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_(N) AX+R(N) v(N) (N) At_AP ]
6"V = [AX(tN)]T[mxx X_ A +Rxt tN

+ lAy(N)] vX vt ]t N
T[R(N)Ax+R(N)At

+ [AtN][(R(Ntx +Hx)AX+(_(N)+Ht)At"tt

+ HpAP+R[ N)Av(N)]t N

N- I

+ _ [Av(J)]T[R(vJ)Ax+R_J)Ao] t
j=l j

N-i

+ _, [AX(tj)]T[Rxx
j=l

Av(J)+R(t)At

N-I
(j)

+ [ [At ][(
j=l J Rtt

-AP(t_)+AP(t +j)]t.
9

+Ht(t_)-Ht(t +j))At. + R (j)Av(j )9 _tv

+ Hp(t_)AP(t_) - Hp(t +j)AP(t +j)

NfI
j=i

•}t+
9 - i

+ (R(1)+HX( t_)-Hx(t +j)
t7

J

2'
[-xTHxxX+2x Hxpp+2xTHxuu+xT _

+2pTHpuU -pT_+uTHuuU

AX] _.
O o

9

T T T T r
+2u CU_+2x CX_+2 gV

i=l
Z. ) zi]dt(Mizi+2_i i (3.4o)
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where the second partial derivatives of

H = Q + pTF + MTc = H + MTc

are given by

HXX = _XX + 7X(MTCX )

T

HXp --Hxp = (Hpx)

Hxu --Hx_ + W<M%x) = <_%x)T

Hpu = Hpu = (HUP)T "

Both the matrices HXX and HUU are symmetric. The terms

TT TT r
2u CU_+2x CX_+2 _ (Mizi+2_iZi)z i

i=l

under the integral in Equation (3.40) vanish, since

implies MiC i = 0 , and therefore

M.Z. = 0
1 !

8(MiZi) = _iZi + M.z.l i : 0

_C. _C.

6(MiC. ) = _i C + M.( l __l i i _---f-x+ u) = 0
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so that

(I) Zi _ 0 (Ci<0) then Mi _ 0 and _i = 0

(2)
Zi = 0 (Ci=O) then M i £ 0 and z i = 0 ,

_C. _C.
I 1

_x-x + -yD-u = 0

If _,x,u,p and _ are "sufficiently small" then the

I "V.
total change in V will be given by AV = 6'V + 7 6 Since

_'V is required to be zero, for an extremal, it follows that

I "V.
AV = _ In order that the trajectory afford a local minimum

to V, AV must be nonnegative for all nearby trajectories;

i.e., AVa0

u whenever

examined.

for all "sufficiently small" variations x and

p = p = 0. The effect of this requirement is now

3.5 Conditions obtained from the second variation.

For the minimizing trajectory,

1 l,v_
AV = _ _0 (3.41)

In Equation (3.40) set AX(tj), Av (j)

to zero. Then AV is given by

, Atj , p
and p equal



t7

I'1 _ ' _ [xTHxxx
AV = [j=l

_/ tt

J-1
The expression for AV

f
N _

iV- 2 L /' _(x,u,t]dt._.__
j=l _:

where

+ 2xTHxu u

can be rewritten as

t
J

t +
j-i

+ uTHuuu]dt

44

(3.42)

¢(x,u,t) = [x T uT] [Hxx

!
I

Hux
HXU I r-_T

I_UU

-'1

X '

AV is nonnegative if the matrix

HXX HXU I
I
I
I

i
HUX HUU _]

is positive semi-definite or positive definite. It is clear

that u can be so chosen that the term uTHuu u will dominate

the others, i.e., Ilxll will be small. Therefore it is necessary

that HUU be positive semi-definite or positive definite, in order

to have aV nonnegative. The latter requirement on HUU , the

strengthened Legendre Condition of the Calculus of Variations, can
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be expressed as

uTHuuu>0 (3.43)

for arbitrary, nonzero u. Henceforth, it is assumed that

Inequality (3.43) holds. The matrix

K

r Hxx ttxu 1

may not be positive semi-definite, but AV could still be

nonnegative (see Section 4.4). If K is positive semi-definite

then the matrix HXX -i- HxuHuuHux is also positive semi-definite,

[27], as is the matrix HXXO

Equation (3.28) combined with Inequality (3.43) shows

that on an optimal trajectory the scalar function H is minimized

with respect to the control U.

A stronger condition than that expressed by Equation

(3.28) and Inequality (3.43) is the Weierstrass Condition

H(X,P,U,M,t) _< H(X,P,U*,M,t) (3.44)

with M = 0 and where U* is any admissible control which

satisfies the Inequalities (3.3), [23].
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Consider now the question of the range for M i

(i -- 1,2,..., r).

constraint C..
l

of Uj ; let Uj

• can be determined from the
Suppose that Uj

Let U*. denote the unconstrained optimum value
J

denote the constrained optimum value of Uj ;

then

Ci(X,U_,t) > Ci(X,Uj,t ) = 0 •

(3.45)

There are two possible cases:
U.* > U and U*_ -< _o
j - j $ 0

(1) u*. >_u.
J J

If the constraint were not present then
Q +

minimized with respect to U, and therefore

pT F is

(Q + PTF) Uj j• - L_Uj U*

• as U.
since Q + pTF is decreasing at Uj 0

a constraint in the problem, the term MiC i

(Q + pT F + MiCi) = 0Q + pTF, so that _-_

increases° With

must be added to

Thus,

M°

l

0 •

Now (_Ci/_Uj) a 0

therefore M i a 0 .

(2) U9 £ Uj .J

A similar argument, utilizing the fact that

at U. = U. , by Inequality (3.45),
J J

• as U.
is decreasing at Uj j

and

decreases, shows that

Q +

Mi_>0 °

pT F

Then,
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for each i = 1,2,..., r

Mi(t) > 0 (3.46)

on the intervals t. l<t<t.j_ - _ j ,
(j = 1,2,o.o, N)

3.6 Conjugate points.

An important condition that must be satisfied by the

trajectory is the absence of any conjugate points° If the

trajectory contained a conjugate point, then the trajectory

is not optimal. There are two possible types of conjugate points;

points conjugate to the initial time t O and points conjugate to

the terminal time tN. Breakwell and Ho [7] discuss a procedure

for determining the existence of points conjugate to the terminal

time, for problems without inequality constraints. In the procedure,

the determinant of a certain matrix is examined at each point on

the trajectory. The determinant is zero at tNo There is a

conjugate point at _, t0_T<tN, if the determinant is zero at T,

but has a nonzero value for t, T<t<t N. It is conjectured that

this procedure, with modifications to handle the inequality

constraints, is applicable to inequality-constrained problems° In

Section 4.4 tests for the existence of points conjugate to t
0

and tN are discussed for inequality-constrained problems.

In the preceding sections of this chapter, conditions

have been found which the trajectory must satisfy in order to

minimize the functional given in Equation (3ol)o These conditions
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do not indicate a procedure to generate such a trajectory. Hence,

a major engineering and mathematical problem is left unresolved°

This problem is discussed in Chapter 4.



CHAPTER4

COMPUTATIONALALGORITHMS

"Bloody instructions,
which being taught,
return to plague the
inventor. "

MacBeth
Act I Scene Vll

The construction of an optimal trajectory is generally

a difficult problem. The functions X(t), P(t), U(t) and

M(t) must be found which satisfy

I. the differential equations; Equations (3.32):

2. the optimality conditions; Equations (3°33), Inequality

(3.43) [or Inequality (3.44)]:

3. the boundary conditions; Initial Conditions (3.4) and

Equations (3.19):

4. the terminal constraints; Equations (3.20 and (3.21):

and

5. the corner conditions; Equations (3.23), 3.24) and (3.25).

In addition, the trajectory must not contain a conjugate point.

To satisfy all of these criteria implies that at least

a two-point boundary value problem (generally nonlinear) must be

solved. The boundary conditions are split between the Initial

Conditions (3.4) on X, at to, and the terminal conditions on

P, Equations (3.19), at t N. Equations (3.25) are intermediate

boundary conditions.

49
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Methods which have been proposed for solving the split

boundary value problems arising in optimization theory include

(i) the gradient (steepest-ascent) methods [14,17,30,32,47],

(2) quasilinearization (generalized Newton-Raphson) methods

[39,40], (3) dynamic programming [18,19], (4) nonlinear

programming [25,26], and (5) perturbation methods [8,29,31,33].

The penalty function technique [28,30,42,44] may be successfully

employed in the solution of inequality-constrained problems. At

present there is no universal algorithm which will solve all

optimization problems. Some of the preceding methods (the gradient

methods) will converge to a good approximation to the optimal

trajectory, starting from crude initial estimates° The gradient

methods may give a trajectory which does not satisfy Equations

(3.33) and Inequality (3.43). Others, such as the perturbation

methods can converge to the optimal trajectory, but often

require good initial estimates. The best procedure may require

two different methods to generate the optimum trajectory° The

initial method gives a good approximation to the solution when

starting from crude initial estimates° The second method, which

uses the answers from the first method as its initial conditions,

is used to obtain convergence to the final answer° Only one

particular method, a perturbation method, will be considered here°

This perturbation procedure is an iterative, rapidly converging

method (provided the initial estimates are sufficiently accurate).

Each iterant satisfies the Initial Conditions (3°2), the

Differential Equations (3.32), and the optimality conditions,
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Equations (3.33) and Inequality (3°43)° The method would be

extremely useful for generating a sequence of optimum trajectories,

each with a slightly different set of Initial Conditions (3°4),

starting from a known optimum trajectory°

It will be assumed that a problem of interest has been

formulated and then analyzed to obtain the information required

by the analysis presented in Chapter 3o The differential equations

governing X and P are known explicitly, as are the equations

giving U in terms of X, P and t. All that remains is to

produce a trajectory, and to test for various properties which

could not be accounted for until the trajectory has been obtained

(such as conjugate points)o

The procedure for generating a trajectory will involve

guessing (or obtaining from another method) initial estimates for

P(t0) , tj, and the unknown multipliers v (j) Once these values

are known, a constrained trajectory can be obtained. This

trajectory will satisfy all the required conditions except perhaps

the boundary conditions (intermediate and terminal) and the

corner conditions_ The question to be considered is the following.

How should P(t0) , tj and v (j) be changed so that the boundary

and corner conditions will be better satisfied? The perturbation

method presented here answers this question and thereby provides

an algorithm which produces the optimal constrained trajectory°

Equation (3°23) shows that the Lagrange multipliers,

Pk' may have finite jump discontinuities at points where
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the trajectory enters a state-variable constraint boundary° The

discontinuities are given in terms of X(tj), t_ and v (j).j
hence the magnitude of the discontinuity in each component of

P may be unknown until the problem has been solved° This

suggests that a boundary value problem containing N-1 intermediate

boundaries, where each one is a vector of point-constraints, is

equivalent to N two-point boundary value problems in series.

Let the entering-corner times be t j, for j _ 1,2, .... , N The

j-th two-point boundary value problem will extend from tj_ I up

to t.. At the beginning of the j-th problem it will beJ

necessary to determine initial values for each Pk (k -- 1,2,oo o, n)

which experiences a discontinuity at tj_lO For the components of

P which are continuous at tj_ I the initial values for the

j-th problem are the same as the terminal values for the j-i

problem. As the multipliers v (j_ only appear at the points of

discontinuity, they can be dismissed from the discussion_ In

Chapter 3 it was shown that Pk could be continuous at a point

where the trajectory leaves a state-variable constraint boundary.

Therefore, each of the N problems has initial and terminal

boundary conditions while none have in_ermed!a_e boundary

conditions° Without loss of generality, the following discussion

can be restricted to a problem with no intermediate boundary

conditions. The procedures for calculating changes in P(t0)

in the "reduced" problem will carry over to the case of N

problems in series, containing N sets of initial values
+

P(tj_l) , (j _ 1,2,..o, N)o
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4.1 The perturbation method for inequality-constrained

problems.

For the "reduced" problem of the previous section the

following relationships hold, in addition to the condition

expressed by Inequality (3.a3).

(i) Equations of motion.

T F(X U,t))( = Hp = 4.1)

T T FTp +-P = HX = QX + C_H 4.2

where M and U are determined from

0 = MiCi(X,U,t), (i = 1,2,ooo, r) 4°3

T T0 = HU = QU + F P + C M 4.4

on t0itit N .

(2) Boundary conditions°

t0 is known and

X(t0) = X o (4.5)

L(X(tN),t N) = 0 (4.6)



pT(tN) = Rx(t N (4°7)
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Rt(tN) + H(tN ) + MT(tN)Z2(tN) : 0 (4.8)

where

R = G(X(tN),t N + vTL(X(tN),t N)

H = Q(X,U,t) + pTF(x,u,t) + MTc(x,u,t)

o = z2 + c(x,u,t)

L is an h-dimensional vector° It has been assumed

that tN is unknown°

The terminal conditions, Equation (4_6), represent

algebraic equations in the n+l unknowns X_(tN),X:_(tN),OOO ,

Xn(tN),t N. Assume that these equations are independent in the

sense that the _x(n+l) matrix

evaluated at t = t is of rank _. Then
N'

of the variables

XI,X2,... , Xn,t N can be found in terms of the remaining n+l-_

variables, [i]° For notational convenience, assume that

XI,X2,... , X_ are found in terms of X_tI,X_+2,_o, Xn,tNo Thus,
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X i = Yi(Xk,tN]

for

i = 1,2,..., £

k = _+i,£+2,..., n

and therefore the £x£ matrix

i, j = 1,2,..., £

is nonsingular, [i]. It should be noted that if the functions

Y. are readily obtainable then the terminal conditions can be
l

taken as Li -- X i - Yi(Xk,tN)

[_Li/_X j] is the £x£ identity matrix.

and therefore, the matrix

Equation (4.7) can be rewritten as

£ _L.

_ +
Pi- _-Ti - _X i Dj

j--i

£ _Lo

Pk - _G + ,._ ___0_
_X k _X k gj=l

i = 1,2,oo_, £

k = £+i,£+2,°o o, n .

(4.7'a)

(4.7'b)

The multipliers

since the £x_,

v. can be determined from Equation (4.7'a)
g

matrix [_Lj/SX i] is nonsingular. Thus,

. = v P tN )v$ j(X, B'
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for

_,j = 1,2,...,

= 1,2,..., n

Since vj is a function of X_,X2,.oo, Xn,

then Equation (4.7'b) can be expressed as

PL,P2,... , P_,t N

Pk = Yk(tN'Xj'Pi )

for

i = 1,2,...,

k = _+i,_+2,..., n

j = 1,2,..., n o

Then at t = tN the following terminal conditions hold:

Li = Li(X(tN),tN) = 0
(4.6'a)

k Pk - Yk(tN'Xj 'P
= 0

i
(4.6'b)

for
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i = 1,2,..o,

k = _+I,_+2, ...., n

j = 1,2,..o, n

Thus X_+ I, X_+2,.°o, Xn,PI,P2,ooo , P_ are unspecified at the

terminal time tN. If vj. = _j(Xo a'Pi'tN) is substituted into

Equation (4.8), the resulting expression is

_G + g(X Pi,tN) + H + MTz 2 = 0 (4 8')s - _t _'

where

3L.

g(X Pi tN) = Z _vj(X P_, , , i,tN )
j=l

The procedure to be followed in solving the boundary

value problem is as follows° Let P(t0) and tN be estimated

values of the initial Lagrange multipliers and the terminal

time, respectively. Equations (4ol) and (4°2) are integrated

from t O to tN, with Initial Conditions (4_5) and P(t0).

During the integration process,

Equations (4.3) and (4.4) o At

will generally not be satisfied°

M and U are calculated from

tN Equations (4_6') and (4.8')

A trajectory (X,P,U,M,t) with
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these properties will be called a nominal trajectory. Desired

changes in Equations (4o6') and (4o8') must be related to

changes in tN and P(t0) so that a new nominal trajectory

can be obtained. This new trajectory is required to satisfy,

more closely, the terminal conditions at tN + at N than did

the present nominal at tNo A smaller terminal error norm will

indicate this event°

Consider a perturbed trajectory which is "close" to

the nominal. The perturbed trajectory (X+x,P+p,U+u,M+_,t)

will be used to obtain the information needed to generate the

new nominal. Since the present nominal trajectory is

(X,P,U,M,t), it is necessary only to find (x,p,u,_,t). Replace

X by X+x, P by P+p, etco in Equations (4_ i) through (4o4).

Expand each of the terms in the resulting equations in a Taylor

series about the nominal trajectory (X,P,U,M,t), for each value

of t, and retain only the first order terms° The resulting

linearized equations of perturbed motion are

= HpxX + HpuU

p = _ HxxX- Hxpp - HxuU - CX-_

T
0 = HuuU + HuxX + HUp p + CU_

I _Ci _Ci 10 = _iCi + Mi _X x + _U u

4.9)

4.10)

4.11)

4.12)
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where

i - 1,2,..., r .

The solution of the preceding system of equations is called the

linearized trajectory. The quantities

_C.
1

Hpx'Cx' _T '
etc.

are evaluated on the nominal trajectory.

Examination of Equation (4.12) shows that

: > 0) then
(i) if Ci 0 (M i

_C. _C.
i i

_T x + _--O--u = 0 ,

(2) if C. < 0 (M. = 0) then
1 1

_i = 0

This will mean that the linearized trajectory enters and leaves

the boundary of a linearized constraint,

_C. _C.
i 1

_ X +
_X _U

u = 0
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at the same times as the nominal trajectory enters and leaves

Ci = 0. Thus, the perturbed trajectory (X+x,P+p,U+u,M+_,t)

is forced to travel parallel to (either above or below) a constraint

boundary (Ci = 0), between the times that the nominal is on the

boundary. Although the perturbed trajectory represents an

approximation to a new nominal, this does not imply that

successive nominal trajectories necessarily have the same entering-

and exiting-corner times.

The quantities u and _ must now be obtained in

terms of x and p. Let us suppose that r I of the constraints

Ci are simultaneously zero at time t. Form the rl-dimensional

vectors E and n: the components of E and n are

_C. _C.
mk i k

Ek - _X x + _----0---u

nk = _Zk

if Cik 0 for k = 1,2,..., r I. (If C.j < 0 then _:j -- 0.)
T TThe terms CX_ and CU_, in Equations (4.10) and (4.11), are

therefore

TCX_ = (4.13)

c_= ETun (4.14)
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and furthermore,

E(x,u,t) = 0 (4.15)

On substituting Equation (4.14) into Equation (4.11) and re-

calling that HUU is a positive definite matrix, the relation

for u can be determined as

-I
u -- -Huu[HuxX + Hupp + ETn] •

(4.16)

Since each component of E

(4.15) may be rewritten as

is linear in x and in u, Equation

E = (Ex)X + (Eu)U = 0
(4.17)

Substituting Equation (4.16) into Equation (4.17) _ and solving

for the terms in n leads to

- -i -i
(Eu% ETu),: (Ex-EuH O ux)X-(EuHu Hop)p (4.18)

Recall from Chapter 3 that whenever

are simultaneously zero, the r1×m

_Cik]

rl inequality constraints

matrix

(4.19)



62

has rank rl, where C. = 0,
i k

k = 1,2,..., r 1

j = 1,2,..., m .

But the matrix given in (4.19) is E
U

To prove that the

rlxr I matrix multiplying n in Equation (4.18) is nonsingular,

let y be an arbitrary, nonzero rl-dimensional vector. Then

uy (EuH E )y = ( )(Huu)(E y) = W HUU W > 0
(4.20)

-i Since the
since if HUU is positive definite, so is HUU.

matrix Eu is of rank rl and y is nonzero, ETy = W_0,

strict inequality holds in (4.20). Therefore, the matrix

-i T is positive definite and can be inverted. Solving for nEuHuuE u

in Equation (4.18) gives

n = S-I[Ax + Bp] (4.21)

where

-i T
S = EuHuuE u

(4.22)

-i
A = Ex-EuHuuHux

(4.23)

-i
B = -EuHuuHup .

(4.24)
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Equation (4.16) can now be written as

-i i Au-- -Hu_[(E_+ E_S- )x + (_UP + E_s-IB)pj (4.25)

On substituting Equation (4.13) into Equation (4.10)

and then substituting Equations (4.21) and (4.25) into Equations

(4.9) and (4.10), the resulting equations are

= _l x + _2P (4.26)

= D3x - _p (4.27)

where E l = A1 + BTs-IA (4.28)

]])2= A2 + BTs-IB (4.29)

m 3 = A 3 - ATs-IA (4.30)

-1 (4 31)
and A l = Hpx - HpuHuuHux •

-I
A2 = -HpuHuuHup (4.32)

-i
A 3 = -Hxx + HxuHuuHux •

(4.33)
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Since the matrices _i, _2 and _3 are evaluated along the nominal

trajectory, they are functions of to At time t, if

Ci < 0 (for i = 1,2,..., r) then the terms in A,B, and S do not

appear in Equations (4.28), (4.29) and (4.30). Furthermore,

Equations (4.31), (4.32) and (4.33) will not contain any terms

involving CX or CU, because M is zero. In this case the

B-matrices reduce to the matrices given by Breakwell et al. [8]

for an unconstrained problem. Hence, the m-matrices of

Equations (4.26) and (4.27) are generalizations of those obtained

by Breakwell. Equations (4.26) and (4.27) are the differential

equations which govern the linear perturbations. Boundary

conditions for Equations (4.26) and (4.27) must now be found.

Recall that the terminal conditions are generally

not satisfied on the nominal trajectory:

Li = Li(Xj,t N) # 0

Jk = Pk - Yk(tN'Xj'Pi) _ 0

S --

_G
_t + g(Xj,Pi,tN) + H + MTz2_0

for i = 1,2,.o.,

k = _+i, _+2,.°., n

j = 1,2,..o, n
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Let

El

L2

L -- . and J =

L_

J
_+i

J
_+2

I

I

I
JJn
k

On replacing X by X+AX, P by P¢AP, tN by tN+atN, etc. in

the equations for L, J and s, expanding the resulting

expressions in a Taylor series about the terminal values

associated with the nominal trajectory and then retaining only

the first order terms, the linearized terminal conditions are

ob t aine d :

AL = (Lx)AX + (Lt)At N

aJ = (Jx)aX + (J p)AP + (Jt)AtN

as = (Sx)hX + (Sp)aP + (st)at N •

The terms in parentheses are evaluated at tN. The subscripts

denote partial differentiation with respect to the subscript

variable• Some terms in the third equation have been omitted

because they are zero on the nominal trajectory. Using the
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in the equations for

can be determined:

aX = x + _at N

AP = p + _atN

AL, AJ and
As, the following equations

where

aL = (Lx) x + (_)atN

_J = (Jx) x + (Jp)p + (J)At N

_s = (sx) x + (Sp)p + (_)_tN

(4.34)

(4.35)

(4.36)

= LX)( + Lt

= Jxi + JPP + Jt

= SxX + Sp_ + s t .
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Recall that

time, in addition to

and P.(j=I,2,..°, _)
$

quantities AX. and AP. can form the n-dimensional vector
l j

Equations (4.34), (4.35) and (4°36) can be solved for x,p and

n-_ of the Xo are free at the terminal
J

of the P.o Thus, if X.(i=_+l,..., n)
j l

are free at the terminal time, the

f.

At N in terms of f, AL, aJ and As. Let the solution be

expressed as

FtN7E11tN21K2212tN13tIEf123|p(tN)| (tN) (tN_ (tN) a_
OatN J K31(tN) K32(tN) K33(t N) As

(4.37)

where

KII , KI2 , K21 and K22 are n×n

T T
K32 , KI3 and K23 are l×n matrices; K33

matrices; K31 ,

is a scalar; and

= implying a_ =
aJ

The equations for x(t N) and p(t N) in Equation (4.37)

represent the required boundary conditions at tN for the

differential equations given by Equations (4.26) and (4.27). The

boundary conditions are given in terms of the desired changes in

the terminal conditions. Relating Equations (4.37) through

Equations (4.26) and (4.27) to changes in P(t 0) and changes
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in tN must now be accomplished.

Equations (4.26) and (4_27) may be written as

dt p _3 -_ P

Equation (4.37) is equivalent to

(4.38)

ItNj[KlltN
(t N K21(t N

Kl2(t N )

_22(tN) K23(t N ) As

(4.39)

and

AtN:K31(tN)f + K32(tN)A_ + K33(tN)Aso (4.40)

Two methods for the solution of Equation (4.38) will

be given. Both methods utilize the properties of a system of

linear first order ordinary differential equations° The

essential feature of each method is the generation of a matrix

whose columns are solutions of Equation (4°38). Either method

can form part of a computer algorithm° Each algorithm contains

(i) the integration of Equations (4_I) and (4°2) from t O to tN,

with U and M calculated from Equations (4°3) and (4.4),

and (2) the application of one of the following methods.
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4.2 Method i.

Let the 2nx2n

for Equation (4.38), [ii].

x(t) and

matrix 6(t) be a fundamental matrix

On expressing e(t) in block form,

p(t) can be obtained:

ixt] tiEx1
p(t) Le21(t) 022(t) p(t N)

(4.41)

where

ell(t N) = 022(t N) = I , the nxn identity matrix,

el2(t N) = e21(t N) = 0 , the nxn null matrix.

On substituting Equation (4.39) into Equation (4.41) and

setting, t = to, the linear perturbations at tO are determined.

Thus,

I_ (t0)] I Kll(t0) Ki2(t0)(t O ) K21(t 0) K22(t 0) K23(t 0 s

(4.42

where

Klj(t 0) = 011(t0)Klj(t N) + 012(t0)K2j(tN)

K2j(t 0) = 021(t0)Klj(t N) + 022(t0)K2j(tN)
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j : 1,2,3

Since X(t 0 )

reduces to

is known, x(t 0) : 0, and Equation (4.42)

0 = Kll(t0)f + KI2(t0)A_ + Kl3(t0)As (4.43)

P(t0 ) : K21(to)f + K22(to)A_ + K23(t0)As (4.44)

The unknowns in Equations (4.43) and (4.44) are f and P(t0).

If Kll(t 0) is nonsingular, f can be determined from Equation

(4.43), p(t 0) found from Equation (4.44) and AtN calculated

from Equation (4.40). (The matrix Kll(t 0) is related to the

conditions for a conjugate point. The test for conjugate

points is given in Section 4.4.) Supposing that Kll(t0) is

nons ingular, then

P(t0) -- WIIA_, + WI2AS

AtN : W21A_ + W22As

where

WII : K22(t 0) - K21(t 0)[Kll(t0) ]-iK12(t0)

WI2 = K23(t 0) - K21(t0)[Kll(tO)]-iK13(t0 )
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w21 = K32(t N) - K31(t N [Kll(t0)]-iKl2(t0

W22 = K33(t N) - K31(t N [Kll(t 0) ]-iKl3(t

The values of A_ and As are determined by

A_ =-_(t N) , and

As = -Bs(t N) ,

where _ and s

factors _ and

chosen so that

are evaluated on the nominal trajectory. The

B are scaling constants, 0<_, B -< i. They are

IIp(t0)II and IAtNI will not be too large. The

magnitudes of p(t 0) and t N are required to be small in order

that the perturbed trajectory will remain "close" to the nominal

trajectory. The appropriate choice for the values of _ and B

must be determined empirically,

The new values of P(t 0) and t N are formed as follows:

P(t0)+P(t0) replaces P(t0) , and tN+at N replaces tNo With

these new values, the iterative cycle is repeated by finding a

new nominal trajectory° The new nominal should yield a smaller

terminal-constraint error than the previous nominal° The

iterative process may be stopped whenever the terminal errors,

II _ II and I sl , are small enough so that the current nominal

trajectory may be accepted as the optimal trajectory°
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4.3 Method 2.

Let the matrix

13(t) ¢i(t)]
,(t) ¢2(t)

be a fundamental matrix for Equation (4°38)°

Equation (4.38) is given by

A solution of

x(t)]
p(t)

= I ¢3(t)
¢4 t) ¢2(t) p(t 0 )

(4.45)

with

¢3(t0) = ¢2(t 0

el(t0) = ¢4(t 0

= I , the n×n identity matrix

= 0 , the n×n null matrix

Since x(t 0) = 0, Equation 4.45) reduces to

r j [:x(t) l(t)p

Lp(t) 2(t)p
toni
tO )

and therefore part of the fundamental matrix, namely

need not be determined.



At t = t N ,

_x(tN)] __ Ii_ (ON)P(O011
LP(tN)J 2(tN)P(t 0

(4°46)
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But Equation (4°39) gives x(tN) and P(tN) in terms of f,

A_ and As. Equating Equation (4°46) to Equation (4.39) and

rearranging terms so that the unknowns, f and P(t0) , are on

the same side of the new equation, gives

21(tN ) -}2(t N P(t 0)

-KI2 (tN) A_-KI3(t N] as 1

-K22 (tN) A _-K23 (tN) AsJ

(4.47)

where A_ and As are -_(tN) and -Bs(t N) respectively. If

the matrix on the left hand side of Equation (4°47) is nonsingular,

f and P(t0) can be found; from Equation (4.a0) at N can be

determined; then the new values of P(t0) and tN can be formed

in the same way as in Method io If the matrix is singular, the

generalized matrix inverse [12] can be used to solve Equation

(4.47). This is done in the follow_ng manner. Let the linear

system given in Equation (4._7_ be represented by _y : b

Since the matrix _ is singular, there is not a unique solution

. _+y The generalized inverse of _, , is found, [12]. The

solution accepted is y = C+b This solution represents the

best approximation to y, in the least squares sense. In either

case (_ singular or nonsingular], the stopping criterion for

the iterative process is exactly the same as that of Method i.
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One practical advantage of Method 2 over Method i is

the smaller number of different initial conditions which must

be integrated to form the matrix used in finding f and P(t0)o

Method i requires the integration of 2n initial conditions°

With Method 2 requiring only n initial conditions, n initial

conditions for each iteration cycle need not be integrated. The

amount of computer time is reduced by half. A disadvantage of

Method 2 is the possible singularity of the matrix in Equation

(4.47). Use of the generalized matrix inverse may appreciably

lower the rate of convergence so that the total amount of computer

time becomes greater than that required by Method in To

determine the more efficient Method one can obtain the convergence

rates by several test computer runs°

This procedure, Method 2, is similar to the one given

by Breakwell et al. [8] for unconstrained problems°

4.4 Testin$ for conjugate pointso

Recall, from Section 3_6, the conjecture on the procedure

of Breakwell and Ho [7] for determining the existence of points

conjugate to the terminal time. It was conjectured that their

procedure was applicable to problems with inequality constraints,

provided modifications were made to account for the effect of the

constraints. The matrix which is to be tested is

Kll(t) = 011(t)Kll(t N) + Ol2(t]K21(t N)
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where KII(tN) and K21(tN) are defined by Equation (4.37);

011(t) and O12(t ) are defined by Equation (4.41). Now,

in an inequality-constrained problem the effects of the

constraints influence 011(t ) and O12(t) because these two

matrices are part of a fundamental matrix for Equation (4.38).

If the constraints were absent then Kll(t) reduces to the matrix

considered by Breakwell and Ho° Thus, Kll(t_ is the matrix

to be examined for the case of inequality-constrained problems

(see Section 3.6).

A different procedure is used to determine the existence

of points conjugate to the initial time, t O . Consider AV for a

trajectory in which 6'V = 0, HUU is positive definite, p = _-- 0

and _ = 0. The terminal time is considered to be fixed. Then

where

i ,,V __ I xTRxxx]tN f_NAV = _-6 5[ + (x,u,t)dt

t o

(4.48)

i T xTHxu u I T_(x,u,t) = _x HxxX + + _u HuuU . (4.49)

The following conditions are imposed on x and u:

= HpxX + HpuU

x(t 0) _ 0



76

x(t N) : b , b is unspecified

i = 1,2,..., r

where c. < 0 if C. < 0
i l

( ci /
c i -- _-z-jx+ _-V-lu= o if c i = o

or z_ + c. : 0 .
i i

relationships to

Form the functional × by adjoining the above

AV; then find 6'X by the same procedure

employed in Chapter 3. (X is an extremum when 6'× = 0 )

6'X -- [(xTRxx- iT + _T)(6x) + (x-b)T(6_)]tN

tN

+ ITHpx + _ c + _)(6x)+ {(_x x

t 0 + ( _THp U T_u + + _ Cu) (_u)

+(HpxX + HpuU - _)T(6x)

r

+(c + z2)T(_) + 2i=_i oizi(6zi)}dt

On setting _'× = 0, the following conditions are obtained:

[(x TRXX - iT + _T)(6x)]tN = 0

x(t N ) = b



= HpxX + HpuU

T
-- -HxxX - HXUu - HXp._ - CxP

T
0 = HuuU + HUXx + HUpX + CuP

(4.50)

(4.51)

(4.52)
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0 = PiZi ,
(i = 1,2,.o., r) (4.53)

By an argument similar to that _used in Section 4.1, the following

differential equation is obtained:

x]= x]
where the D-matrices are defined in Equations (4.28), (4.29)

and (4.30). Furthermore u is given by an equation of the same

form as Equation (4.25). Using this equation, replace u in

the expression for _(x,u,t) to give

i i T
L0 = -_ xTD3 x - [_ _2 _- •

Now

d(lTx) = _Tx + lTi = (xTD T _ ITNI)x + xT(DIx + D2X)

= xTD3 x + xTN2},
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is a symmetric matrix.
since D3

Thus,

i d xTx)

and therefore

t N

IT _ i/ dAV = [ix RxxX]tN [ _-_CxTx) dt

to

1 2Rxx x xTX]tN= y[

= 0. Define the matrices
since x(t 0 )

Section 4.3. Since x(t 0) = 0,

¢_(t ) and
¢2(t) as in

xCt) = ¢_(t)Xo

xCt) = ¢2(t)X@

with XO -- X(to)

_(to) = o ,
nxn null matrix

¢2(t0) = I , nxn identity matrix •

Then AV can be written as



79

i T cT(tN)Rxx_ (tN) cT(tN)¢I(tN)]_ 0_v = _ _o [ _ _

Define the matrix _ as

H = cT(tN)Rxx¢I(tN) _ cT(tN)¢I(tN)

Thus

i T
AV- 2 10HI0

T
Now the term

¢[(tN)Rxx¢I(t N) is symmetric. The matrices

el(t) and ¢2(t) satisfy the differential equations

$i = ]_I_I + ]]2_2

$2 = ]D3_l - ]])IT_2

and therefore the matrix ¢T¢ l satisfies the differential equation

Therefore ¢_¢i is symmetric. Thus, the matrix

eigenvalues. Finally, AV > 0 for arbitrary _0_0

real, symmetric matrix H is positive definite. If

negative eigenyalues then there exists a

has real

if the

H has

_0 such that &V < 0
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and thus there is a conjugate point on the trajectory.

for the existence of points conjugate to the initial time

t O is reduced to determining if the real, symmetric matrix ff

is positive definite.

It should be noted that any segment of an optimum

trajectory must also be optimum.

also apply to each t l, t O _<t_ < •_N ' with t l, replacing t O

as the initial time.

In this chapter computational algorithms, based on a

perturbation method, were devised for inequality-constrained

optimization problems. Testing the algorithms is accomplished

by the numerical solution of a constrained nonlinear problem.

The chosen problem and the numerical results are presented in

Chapter 5.

The test

Hence, the above procedure must



CIIAPTER 5

NUMERICAL SOLUTION OF A
CONSTRAINEDNONLINEAR PROBLEM

5.1 The constrained nonlinear, problem_

A nonlinear problem originally studied by Fowler [20]

was selected to test the algorithms of Chapter 4o The problem,

a minimum time low-thrust Earth-Hars transfer at constant

mass-flow rate, was modified by introducing inequality constraints°

A brief discussion of the original problem appears in

Appendix A.

Considered as a nonlinear optimization problem with

inequality constraints, the modified problem can be stated as

follows. Select U3(t) and U_(t), 0_t!t N , so as to

minimize the functional

F = Ui_t
N 5.1

subject to the differential equations

vX4 + _[cosU:_cosU_]
p3

° U_U_[cosX2 - YXs_ + iC0] _ U:_sinU_]
P _

5.2

(5.3

i3 _ ¥X__ + U:U:[
3 l-U_t sinU-_] (5 4

P

81
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x_ = x. (5.5)

X 5 = X 2 5°6)

X6 = X3 5 °7)

where

B and

2 = X 2 + X 2 + X 2 , U_ and US are constants (they are

Icl in Appendix A); the _cerminal conditions

L i : Xi - Yi(tN) = 0 5.8)

for i = 1,2,3,4,5,6 (where Yi_tN# can be determined from

Equation (A.13) in Appendix A); the inequality constraints

C_. : U 2 - a 2 _< 0 (5.9)

C2 = (U_ - at)
2

2 < 0 (5 i0)- a 2 _

where ai, a2 and a 3 are constants; and the initial conditions

are given by Equations (A.14) through (A°19) in Appendix A, for

XI(0) to X6(0) respectively° For _his problem, m = 2, n = 6,

= 6 and T = L. The variational Hamiltonian for the inequality-

constrained problem is
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H = pi [- X-7--_-_+ U1}_cosU3cosU4]3 1
P

+ P2[- _ +
3

P

U ]_3_cos UI-U 3sinU4 ]

U]U
+ P3[- + _u-'2 inu33 1

P

+ P4XI + P5X2 + P6X3

+ MIEU 2 - a S] + M2[(U _ - ai) 2 - a22 ]
(5oli)

As neither

multipliers,

C 1 nor C2 explicitly contains X, the Lagrange

Pk' will satisfy the differential equations

PI = - P4
C5. i2)

P2 - P5
(5.13)

P3 = - P6
(5.14)

P4 = _ P! + bX_
3

P

(5o15)

P5 = -Y'- P2 + bX5
3

P

(5.16)

P6 - Y P3 + bX6
3

O

(5.17)
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where

b - 3¥

50

[PIX4 + P2X 5 + P3X6] 5.18)

The boundary conditions that P must satisfy are

P(t N) = v 5.19)

UI + vTLt(tN ) + H(t N) = 0 5.2o)

where

by

v is unknown. The optimal unconstrained controls are given

sinU 3 =

cosU 3
2 2

- P1 + P2

- p2 + p2 + p2
1 2 3

(5.21)

(5.22)

sinU4 =
.P2

(5.23)

cosU_ = (5.24)

The multipliers M I and M 2 are calculated from
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M 1 =

y\l-u it }

(5.25)

0 ; if C1 < 0

M 2 =

_- < l_Ult] _U4-al ]

0 ; if C2 < 0

_ P2cosU4]; if C2 = 0

(5.26)

By Inequality (3.46), M1A 0 and M 2 h 0 •

derivatives of H are given below.

The second partial

[oo]HXX = 0 HXX

(5.27)

Each block in Equation (5.27) is a
3×3 matrix.

HXX =

_2 H _2H _2H

_X_ _X4_X5 _X4_X_

\

\ _2H

_X 2

\

symmetric

_2H

\ X 2
_/
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The elements of HXX are

2H- 3__YXjPj xj_bj b

(j = 4,5,6)

(5.28)

_b

_2H _ 3YX. P._3 - Xj_-_k
_Xk_X j ps K J

(k-- 4, j = 5,6; k-- 5, J = 6)

(5.29)

where b is given by Equation (5.18).

[0 i]HXp = - 0
HXp

(5°30)

Each block in Equation (5.30) is a
3×3 matrix.

HXp =

_2H

_X4_PI

_2H _2H

_2H _2H

_Xs_P3

\

symmetric

\

\ _2H

\ _X6_P3

The elements of HXp are given by
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_2H _ Y

_Xj _Pj-3 p 3

+ 3_X X 2. (j -- 4 5 6)
5 3

P

(5.31

2H _ 3y Xk Xj+3
_Xk_ P j p 5

(k = 4, j = 5,6)

(k = 5, j = 6)

(5.32

The 6x2 matrix HXU is identically zero°

HXU _ 0 (5.33

The 2x2 matrix HUU is given by

where

HUU =

82H _)2H

.52H _2H

_U3_U4 _U_

_U3_U 4

(5.34

(u u2
l_Ul t,[(Plc°sU4+P2sinU 4)cosU3+P3sinU 3] + 2M i (5.35

_2H _ UIU

_U3_U4 ( 2 )[PlsinU4_P2cosU4]sinU 3l-U1t
(5.36

82H
( UIU2 )[p cosU4+P2sinU4]cosU3 + 2M 2
I_UI t l (5.37
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The 6×2 matrix HpU

I-]HpU

Hpu = 0

is given by

(5.38)

where each block is a 3×2 matrix, and

Hpu

_2H

_P->qTU3

_2H

= _P-Y_U3

_2H

 - Vv3 u3

_2H

with

_2H
=_ (T_UIt)sinU3cosU4UI__

__-V_3

(5.39)

_2H =- (_)sinU3sinU4
_-_2_U 3 I-UI t

(5._o)

2H _)cosU3
_-_U_ = (I-UI t

(5.41)

_2H = -
_4 ( )c°sU3sinU4

(5.42)
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_2H _ UIU2 )cosU3cosU 4 (5.43)
_P2_U4 (l-U]t

_2H = 0 (5.44)

_P3_U4

The D-matrices, Equations (4.28), (4.29) and (4.30),

are given at time t for the four possible cases, as follows.

(i) C1 < 0 and C2 < 0
With M1 = M2 = O, it follows that

D l = Hpx

D 2 = -HpuWoHup

D 3 = -Hxx

(5.45)

-I

where W 0 = HUU.

(2) C l = 0 and C2 < 0. Here M2 = 0 but M1 _ 0. Let

E = (2U3)u3, where U3 is the value obtained from C1 = 0;
then

E = [2U3, 0]
U

E = 0
X

Equations (4.21), (4.22) and (4.23) then can be determined as

= 0 and = 0)
(E x HUX
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S = 4U_hll

A = 0

-I
B =-[2U 3 , 0]HuuHup

where i [ iIHUU =
12 h2

Then the W-matrices are

DI = Hpx

D 2 = -HpuWIHup

D 3 = -Hxx

(5.46)

where the 2×2 matrix Wl is

(3) Ci<0 and

W-matrices are

Wl= /82H -i .

C2=0. For this case MI=O and M2L0. The
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_i = Hpx

_2 = -HpuW2Hup

_3 = -Hxx

J
l

(5.47)

where the 2×2 matrix W 2 is

W 2 = o]
0

(4) CI = 0 and C 2 = 0.

Both multipliers, M I

matrices are

and M 2 , may be non-zero. The

ZI = Hpx

]])2= -HpuW3Hup

_3 = -Hxx

D

(5.48)

Where W 3 = 0.
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For each of the four cases, only _2

fact the expression for _2 can be written as

is chanKed. In

]])2 = -HpuWiHup

where W i may be IIuI , W I , W 2 , or W 3

(3) or (4) respectively.

for cases (i), (2),

The linearized boundary conditions at ty are

A'F = x + (_ - 9)At
N

+ (H t - FT_ + rIxX + Hp__)At N

p = AP - (f_)At N

where the ouantities in parentheses are evaluated at t_T.

Set f equal to A? and solve for x, p and At N

terms of f, A_ and As. The resultin_ solution is in the form of

Equation (4.37) with
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KII(tN) = K33(tN)[(X-Y)(X-y) T] (5 49)

Kl2(t N) = I + K33(tN)[(X-Y)(Hx)] (5 5O)

KI3(tN) = -K33(tN)[(X-Y)] (5 51)

K21(t N) : I + K33(tN)[(P)(X-Y) T] (5 52)

x22(t N) = x33(tN)[(})(_×)] (5 53)

K23(t N) = -K33(t N)[(P)] (5 54)

K31(t N) = -×33(tN)[(_-9)T] (5 55)

K32(tN) = -K33(tN)[(HX)]
(5 56)

K33(t N) : (1{t_pTT+_xg)-1 (5 57)

b_e 6x6 identity matrix.

5.2 _Jumerical experiments.

For numerical solution, two computer programs were

written in _ORTRAN-63 for the Control Data Corporation 1604

Commuter at The University of Texas. Method i was used in one

program vrhile Method 2 was used in the second. In both programs
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the numerical integrations were carried out using an Adams

Predictor-Corrector Procedure (predictor truncation error

O(hS); corrector truncation error O(h6); where h is the

step-size) with a Runge-Kutta starter (truncation error

O(h 5) ) and with partial double-precision arithmetic. Previous

experience with the systems of differential equations for this

Earth-Mars transfer problem has shown that a step-size of

approximately i day was sufficient to control the _rowth of

round-off errors and truncation errors. The terminal time

was approximately 176 darts and t!_erefore the ste_-size was

determined by h = t_,/176. _atrix inversions and solutions to

linear al_ebraic systems _ere implemented by a C_aussian

Elimination method, with row pivioting, in double-precision

arithmetic. The first part of a stud_ of low-thrust _uidance

methods at The University of Texas [45] involved the _eneration

of an unconstrained trajectory for the problem in Section 5.1.

P(t 0) and t N for this trajector_T were used as initial

approximations in order to check-out the computer programs.

Several constrained trajectories with different values

for the constants a±, a2 and a3 in Inequalities (5.9) and

(5.10) were calculated using both Method I and Method 2.

Convergence to the same terminal error norm was achieved with the

same number of iterations for both methods. Of the two, Method

2 is preferred because it required only half the computer time

needed by Method io
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For each trajectory the scaling factors _ and B

in A_ = -_T(tN) and as = -_s(tN) were fixed at _=B=I.

With these values of _ and B, it was found that the methods

diverged whenever the constraint levels were lowered by too

great an amount° Consequently the following procedure was

adopted. The constants a_ and a2 in Inequality (5.10)

were only changed slightly between the different trajectories so

that the solution for one constrained problem served as a good

initial guess for the next problem° In this manner a series of

different constrained trajectories were quickly generated,

(see Table i).

Some experimental results for five different constrained

trajectories are listed in Table io The bounds on the control

variables signify the minimum and maximum values which U 3 and

U 4 could attain, when restricted by the constraints given by

Inequalities (5°9) and (5o10)o Table 2 gives the terminal time,

tN, and the norms of the terminal errors, ii_li and is l, for each

iteration needed to obtain Trajectory 5o Comparison of the

initial and final values of the terminal error norms and the

number of iterations required, shows that the algorithms of

Chapter 4 provide a rapidly converging method for the solution

of constrained optimization problems°
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TABLE 2

CONVERGENCE DATA FOR TRAJECTORY 5

Iteration

5

6

7

8

tN

175.56718

175.69711

175.66993

175.73047

175.73417

175.73421

175.73421

175.73421

175.73421

J

II

1.80x10 -2

1.07x10 -2

3.74xi0 -3

4.20xi0 -4

8.02xi0 -6

3.71×10 -7

7.17xi0

1.30xlO

2.67xi0

-9

-I0

-II

Isl

1.96xi0

6,34xi0

1.12x10

-5

-6

-6

3.74xi0 -12

2.06×I0 -13

5.07×10 -14

3.76xi0 -I0

-i0
5.05×I0

1.20×10 -7
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Figure i contains graphs of U3 and U4 for the

unconstrained solution, Trajectory i, and a constrained solution,

Trajectory 4. An interesting feature of Trajectory 4 is the

approximate "bang-bang" control for U4. Figure 2 is a graph

of the control variable U4 for Trajectory 5, for Iterations

0 and 8.

Further numerical results appear in Reference 36.

Appendix B contains the description of a linear

problem with a second order state-variable inequality constraint°

The computational solution of this problem by Method 2 is given.
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CHAPTER 6

CONCLUSIONS

The problem of optimization of nonlinear systems

subject to inequality constraints has been investigated from

the viewpoint of producing an optimal trajectory. Two general

forms of inequality constraints were examined: C(X,U,t), which

explicitly involved the control, and S(X,t), the state-variable

constraint, which did not° It was shown that the control could

be readily determined so that the trajectory would not cross a

constraint boundary of the form C(X,U,t) = 0. On a state-

variable constraint boundary, S(X,t) = 0, the control was chosen

to satisfy dqS/dt q = 0, where the q-th derivative of S is the

first one that explicitly contains the control. If the control

is chosen in this manner, the derivatives dJs/dt j , j < q ,

must be zero at the point where the trajectory enters the

boundary. Furthermore, the derivative dq-is/dt q-I must be

zero at the point where the trajectory leaves the boundary. Thus,

a state-variable constraint can be reduced to a constraint of the

form C(X,U,t), in addition to some intermediate boundary conditions.

A general problem involving inequality constraints,

C(X,U,t) S 0 , and intermediate boundary conditions was studied

to obtain the relationships which govern its solution. It was

found that whenever p of the constraints were simultaneously

zero, then p _ m , where m is the number of control variables,

U..j Furthermore, the pxm matrix, [_Cik/_Uj] , must be of full

i01
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rank for Cik 0 , k = 1,2,..., p. It was found that the
Lagrange multiplier, P , which was used in the analysis, could

be discontinuous at the point where the trajectory entered a

state-variable constraint boundary, but could be continuous at

the point where the trajectory left the boundary° This is an

extension of the results of Bryson et alo [i0] to the case of

more than one control and more than one state-variable inequality

constraint. Differential equations for the state X and the

multiplier P were obtained in terms of the partial derivatives

of a variational Hamiltonian, H = Q + pTF + MTc. The optimum

control U and the multiplier M could be determined from a

set of algebraic equations, in terms of X, P and t.

The various conditions which the solution to an

inequality-constrained optimization problem must satisfy were

restated in the form of a two-point boundary value problem.

A new perturbation method for inequality-constrained problems

was devised to handle the two-point boundary value problem. This

method was based on the linearization of the differential

equations for X and P, the optimality conditions giving M

and U, and the terminal conditions, about a nominal trajectory,

then calculating changes in the initial conditions and the terminal

time so that the new nominal would more closely satisfy the terminal

conditions. The resulting computational algorithm provided a

rapidly converging procedure (if the initial approximation was

"sufficiently close") for systems which are required to satisfy
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inequality constraints° This was demonstrated in the numerical

experiments.

A simple test for the existence of points conjugate to

the initial time t O was derived in Chapter 4. No conjugate point

existed on the trajectory if a certain matrix was positive definite.

In an optimization or open-loop control problem the state

variables and the control variables are obtained as functions

of time: X = X(t) and U = U(t). The related problem, feedback

or closed-loop control, gives the control as a function of the

state: U = U(X). The major difficulty in closed-loop control is

to determine the entering- and exiting-- corner times° Mclntyre

[41], discussing the closed-loop control problem associated

with inequality-constrained systems, notes that near the corner

points one would have to resort to open-loop control. A feedback

control scheme based on the perturbation method of Chapter 4,

where changes in the corner times are neglected, would probably

give sufficiently accurate results. Further work on this topic

is required.
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APPENDIX A

A study of Earth-Mars transfer trajectories is important

because of the expected expeditions (manned or unmanned) to Mars

within the two decades following 1970. Some of the space vehicles

on these missions may be powered by low-thrust ion or plasma jet

engines. Such engines are characterized by low fuel consumption

and continuous thrusting capability. At a low-thrust level the

acceleration of the vehicle will be small and therefore the

thrust may be applied for most or all of the mission. For the

problem studied by Fowler [20], the thrust magnitude and the

mass-flow rate were taken as constants. The mathematical model

is given below.

A low-thrust Earth-Mars trajectory is sought. The

vehicle is assumed to travel in an inverse square gravitational

field. The orbit of Mars is assumed to be an ellipse with an

eccentricity of e = 0.093393 and a semi-major axis of

a = 1.523691 AU (astronomical units). The orbit of Mars is

assumed to lie in an plane which is inclined to the ecliptic

at an angle of i = 0.032289 radians; see Figure AI. The equations

of motion which describe the transfer trajectory are expressed in

a heliocentric rectangular cartesian coordinate system whose

X-axis coincides with the line of ascending node for the Mars orbit.

The Y-axis lies in the Ecliptic plane and the Z-axis coincides

with the angular momentum vector of the earth with respect to the

sun. The coordinate system is shown in Figure AI.

105
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Considering the sun as a homogeneous, spherical body

with a gravitational potential given by

= ym/r (A.I)

where r is the distance from the sun to the position of the

vehicle, m is the mass of the vehicle, and ¥ is the solar

gravitational constant (¥ = 0.000296007536 AU3/day2), then the

motion of the vehicle in the gravitational field of the sun is

given by

m_ = V_ + T (A.2)

where v is the vehicle velocity vector, and T is the vehicle

thrust vector. The solar radiation forces and drag forces have

been neglected. The thrust, T, is given by

T = -Bc (A.3)

where B is the propellant mass-flow rate, and c is the

effective propellant exhaust velocity relative to the vehicle.

The components of the thrust vector in the (X,Y,Z)-coordinate

system are specified by two thrust orientation angles, _ and

@, as shown in Figure A2. Letting (U,V,W) and (X,Y,Z) be the

velocity and position components respectively in the (X,Y,Z)-

coordinate system, the equations of motion become
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0 - yX + B-/Si[cosscos_]
r3 m

(A.4)

% - YY + B-J_[cos@sin_]

r3 m

(i.5)

9 - yz + s_lmL[sins]
r3 m

(A.6)

= U (A.7)

Y =V (A.8)

F, = W (A.9)

where

of c.

r 2 = X 2 + y2 + Z 2 and Icl is the magnitude

The mass m satisfies the differential equation

m = -B (A.IO)

Since B is a constant,

m = m 0 - (t-t0)B
(A.11)

For the units chosen in the problem,
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time is in days

position is in AU

speed is in AU/day

mass is in vehicle mass; and

m 0 = i

t o = 0 (12:00 noon, May 9, 1971)

B = 0.00108 vehicle mass/day

Icl = 0.0453649854 AU/day

At to: the argument of perihelion of Mars is m = 5.8541335

radians, and its eccentric anomaly is 4.250885 radians.

The position and velocity of Mars are computed by

finding the eccentric anomaly, E, as a function of t. The

eccentric anomaly is given by Kepler's equation,

where

+ es n 0
e is the eccentricity of Mars' orbit,

E 0 is the eccentric anomaly at to,

y is the solar gravitational constant, and

a is the semi-major axis of Mars' orbit.

(A.12)

With E known, X", Y" and Z" can be calculated from
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X" = a(cosE)

_e 2|Y" : a (sinE)

Z T! -- 0

where the (X" Y",Z")-coordinate system is shown in Figure AI.

The coordinate transformation from the (X" Y" Z")-system to the

(X,Y,Z)-system is given by the equation,

!xIicossin0IIxJaelY = cosi(sin_) cos_(cosi) -sini Y"

Z __ sini(sin_) sini(cos_) cosi _ L Z"

(A.13)

where _ is the argument of perihelion of Mars, i is the angle

of inclination of Mars' orbital plane. The initial conditions

are

U(t 0) = -0.0003455906 AU/day
(A.14)

V(t0) = -0.0171986836 AU/day
(A.15)

W(t0) = 0.0 AU/day (A.16)

X(t 0) = -0.9998 AU (A.17)
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Y(t 0) = 0.02009 AU (A.18)

Z(t 0) = 0.0 AU (A.19)
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MARS' ORBITAL PLANE

EARTH'S ORBITAL PLANE (ECLIPTIC)

FIGURE AI. COORDINATE SYSTEMS
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FIGURE A2. THRUST VECTOR COMPONENTS



APPENDIX B

As an example, the computational procedure of Chapter 4

is given for a state-variable inequality constraint.

was first discussed by Bryson et al. [i0].

The problem concerns the minimization of

I

This problem

subject to

X1 = U

x2 = Xl

S = X2 - 0.i ! 0

and x_(o) = 1

x2(o) = o

x_(1) = -1

X2(1) = 0

The first derivative of S which explicitly contains the control

U is _ = U. Thus, at the point t = tl , where the trajectory

meets the constraint boundary,

ll3
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L_l) = S = X2 = Xl = 0

L_ I) = S = X2 '0.i = 0

The variational Hamiltonian is

H

U + PIU + P2XI ; S < 0

U + PIU + P2XI + MS" : S = 0

The differential equations for the multipliers PI and P2 are

P1 - P2

P2 = 0

The boundarv conditions at

and (3.25);

tl are given by Equations (3.24)

Pl(t +) = Pl(t7 - v_ I)

P2(t +) = P2(tT

1 2(t TH(ty) = _p = 0



ll5

Thus at t = tT , P1 (tT) = O. Note that both P1 and P2 are

discontinuous at t I. The problem can be split into two segments;

one from O_t_t 7 and the other from t_<t<l.

Part i. 0st_tT

The unknowns to be determined are

t I. The boundary conditions are

PI(0) , P2(0) and

LII) = x (t7)= o

l)
L2 = X2(t 7) - 0.i = 0

L_ l) = Pl(t T) = 0

The linearized differential equations are

Xl = -Pl

X 2 = X I

P 1 = -P2

p2 = 0

so that

el(t) =
-tt 2

-_-
t2]2

t 3

-6-
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_2(t) =

The linearized terminal conditions are

xl(tT)

x2(tT)

pl(tT)

p2(t_)

0

i

_il(tT) i 0 0

_i2(t_) 0 i 0

-}_(tT) o o 1

0 0 0 0

P2

Atl

AL_ l)

AL_ I)

AL_ I)

so that the corrections

the solution to

0 -il (t_)

o -i2(ti)

0 -Pl(tl)

i 0

pl (0) , P2 (0)

J

t I -_-_2

and Atl are given by

P2

Atl

p_(O)

p2(O) I

___]_i)

_ _i_2(1 )
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The computational procedure is the following:

(a

(b

(c

(d

(e

Guess PI(0) , P2(0) and tl

Integrate the differential equations for

X1 , X2 , P1 , P2 from 0 to t 1

Compute ¢l(t_) and ¢2(t_)

Calculate p1(0) , p2(0) and atl

_orm new values of Pl(0) , P2(0) and t I .

Part 2.

P2(t + ).

t_t_l.

The unknowns to be determined are

The boundary conditions are

P1(t_) and

x1(t_) = 0 x2(t )= 0.i

L (2)1 = XI(1) + I = 0

t_ 2) = x2(1) = o

On the boundary

equations are

S = 0 (t+<_t<t2) the linearized differential

xl = 0

X 2 = X 1

Pl = -P2

p2 = 0
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so that

_1(t) =

_2(t) =

For t>t 2 the linearized differential equations are

il = -Pl

X2 = XI

Pl = --P2

p2 = 0

and therefore

_l(t) = jt2-t v(t)

I 2

k-J(t 2-t) w(t)

i i 2v(t) = - (tl-t) 2 + _(tl-t2)

i 2t _ _ 2w(t) = (tl-t) 3 + [(tl-t2) (tl-t2) (2t2+tl)
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¢2(t) =

i tl-t 10 I

The linearized boundary conditions are

x1(1) = ALl 2)

X2(I ) = AL_ 2)

so that

Ft21vl
L-½(t2-z) 2 Jw(z) h P2(t+l) AL_2) "

The computational procedure is similar to that of

Part i: only need to estimate Pl(tt) and P2(tt) since

t I is known.

The optimum values are

P_(O) = 6.666666666

P2(O) = 22.22222222

Pl(tt) = -8.888888888

P2(t}) = -P2(O)

t 1 = 0.3

t2 = 0.7
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The optimum control is

U

-5.0

i 0|5
1.0

I I I I I t
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